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Motivating Question

Can I tell two shapes apart?

Answer: No! If the shapes have 
dimensions 4 or more.
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• From Software to Symmetries
• From Symmetries to Shapes
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Geometry Group Theory

Pythagoras of 
Samos 

(c. 570 – c. 495 BC)   

Évariste Galois   
(1811 – 1832)

Computer 
Science

Alan Turing
(1912-1957)



Geometry Group Theory Computer 
Science

Geometric Group Theory

Mikhail Gromov 
(born 1943)



Geometry Group Theory Computer 
Science

Geometric Group Theory

 curvature
 growth
 length
 volume

 Abelian
 Nilpotent
 Cyclic 

subgrouops
 Hyperbolic 

groups

● Decision Problems
● Computational 

Complexity
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It is possible to list all surfaces:

Theorem:  If X is a closed (compact+no-boundary) surface then X is 
equivalent to one of the following families of surfaces

● The sphere
● S(g), the surface with g handles
● P(g), a Klein bottle with g handles.
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A surface is an object which locally looks like a disk:

It is possible to list all surfaces:

Theorem:  If X is a closed (compact+no-boundary) surface then X is 
equivalent to one of the following families of surfaces

● The sphere
● S(g), the surface with g handles
● P(g), a Klein bottle with g handles.

???
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Equivalent surfaces:

=



Shapes
(Manifolds)

For which n can I make a list (without repetitions) of all 
n-manifolds? 
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Examples:
● 2-dimensional manifolds: possible to classify
● 3-dimensional manifolds: possible to classify
● 4-dimensional manifolds: impossible to classify
● 5-dimensional manifolds: impossible to classify
● …

Uses lots of group 
theory!!



Shapes
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Examples:
● 2-dimensional manifolds: possible to classify
● 3-dimensional manifolds: possible to classify
● 4-dimensional manifolds: impossible to classify
● 5-dimensional manifolds: impossible to classify
● …

Uses lots of group 
theory!!

We will explain this today!
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Software
(Turing Machines)

What does a computer do?

Input Output

Computation:
● Has infinite memory 
● Finite set of rules to 

manipulate entries in memory



Software
(Turing Machines)

Formally:
● Memory: Infinite tape with a start point and a finite set 

with symbols from a finite set A (e.g. A = {0,1,b}) on them. 
A is the tape alphabet.

● Working-Memory: A finite set Q of states. With one initial 
state i and one final state f.

● A pointer to the tape
● A set of rules  r : Q x A         Q x A x {L,R}

How to compute things:
● Write input on the tape, set pointer to the start and state to i
● Manipulate entries according to rules.
● Finish: once the state reaches f. Then the output is on the tape.
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with symbols from a finite set A (e.g. A = {0,1,b}) on them. 
A is the tape alphabet.

● Working-Memory: A finite set Q of states. With one initial 
state i and one final state f.

● A pointer to the tape
● A set of rules  r : Q x A         Q x A x {L,R}

b b 0 1 1 0 0 0 1 0 1 1 0 b b

State = i
r(i,0) = (q_1,1,L)

Input: 0 1 1 0 0 0 1 0 1 1 0
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Software
(Turing Machines)

Formally:
● Memory: Infinite tape with a start point and a finite set 

with symbols from a finite set A (e.g. A = {0,1,b}) on them. 
A is the tape alphabet.

● Working-Memory: A finite set Q of states. With one initial 
state i and one final state f.

● A pointer to the tape
● A set of rules  r : Q x A         Q x A x {L,R}

b b 0 1 1 0 1 0 1 0 1 1 0 b b

State = f
r(q_2,1) = (f,1,R)

COMPUTATION FINISHED!
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Does a given Turing machine has to complete its computation (‘Halt’)?
 → Clearly No! 

Can we  decide if a Turing machine halts?

Is there a Turing machine h with input all Turing Machines and all inputs, 
such that:

 



Software
(Turing Machines)

Does a given Turing machine has to complete its computation (‘Halt’)?
 → Clearly No! 

Can we  decide if a Turing machine halts?

Is there a Turing machine h with input all Turing Machines and all inputs, 
such that:

 h : N x N → {0,1}
Assume that all Turing Machines and 
Inputs are encoded in N (natural 
numbers).



Software
(Turing Machines)

Define: g : N → {0,1} via:

If g is the nth Turing machine then

  



Software
(Turing Machines)

Define: g : N → {0,1} via:

If g is the nth Turing machine then

  

● If g(n) halts, then h(n,n)=0, hence g(n) does not halt 
● If g(n) does not halt, then h(n,n)=1, hence g(n) does 

halt. 
CONTRADICTION



Software
(Turing Machines)

Theorem (Turing): There is no Turing Machine which decides 
if a Turing Machine with a given input halts or not.
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ISOM(            ) = {e, r1, r2, s1, s2, s3}

= D6
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Symmetries
(Groups)

ISOM(            ) = {e, r1, r2, s1, s2, s3}

= D6

How can we store this information?

● Write out the Cayley Table (not so efficient)
● Or: Just record the most essential equations (‘relations’):
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Generally: S a finite set, R a set of relations in S, then set: 

G is finitely presented if S and R are finite.



Symmetries
(Groups)

Generally: S a finite set, R a set of relations in S, then set: 

G is finitely presented if S and R are finite.

What can we know about the group from a given group 
presentation? 



From Software to Symmetries

Question: Can we decide if an element in a finitely presented group is trivial?



From Software to Symmetries

Question: Can we decide if an element in a finitely presented group is trivial?

NO!

Because we can use groups to simulate 
Turing Machines
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(sketch in semi-groups)

Let T be a Turing machine with
● Tape Alphabet A
● States Q 



From Software to Symmetries
(sketch in semi-groups)

Let T be a Turing machine with
● Tape Alphabet A
● States Q 

Define a finitely preseted (semi) group via



From Software to Symmetries
(sketch in semi-groups)

b b 0 1 1 0 0 0 1 0 1 1 0 b b

State = i

Input: 0 1 1 0 0 0 1 0 1 1 0

0 1 1 0 P i 0 1 0 1 1 0  

Word in G:

r(i,0) = (q_1,1,L)



From Software to Symmetries
(sketch in semi-groups)

b b 0 1 1 0 0 0 1 0 1 1 0 b b

State = i

Input: 0 1 1 0 0 0 1 0 1 1 0

0 1 1 0 P i 0 1 0 1 1 0  

Word in G:

r(i,0) = (q_1,1,L)

Relation:
0 P i 0 = P q_1 0 1 



From Software to Symmetries
(sketch in semi-groups)

0 1 1 0 P i 0 1 0 1 1 0
=   0 1 1 P q_1 0 1 1 0 1 1 0

Word in G:

b b 0 1 1 0 1 0 1 0 1 1 0 b b

State = q_1
r(q_1,0) = (q_1,1,L)

Relation:
0 P i 0 = P q_1 0 1 



From Software to Symmetries

Theorem: It is undecidable if an element in a finitely presented 
group represents the identity or not. 
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From Symmetries to Shapes

(and the other way around!)



From Symmetries to Shapes

Fundamental group:

Let X be a shape (a topological space) with a point x.

p(X) the fundamental group of X is:
● Set of all loops based at x
● We can combine two loops g, h  in p(X) by applying them after 

each other
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Let X be a shape (a topological space) with a point x.

p(X) the fundamental group of X is:
● Set of all loops based at X
● We can combine two loops g, h  in p(X) by applying them after 

each other
● Equivalent if loops can be stretched into each other.

Group?

● Identity? 
● Associativity?
● Inverse?



From Symmetries to Shapes

Fundamental group:

Let X be a shape (a topological space) with a point x.

p(X) the fundamental group of X is:
● Set of all loops based at X
● We can combine two loops g, h  in p(X) by applying them after 

each other
● Equivalent if loops can be stretched into each other

Group?

● Identity?  Loop which remains at x
● Associativity? Clear!
● Inverse? Same loop in opposite orientation



From Symmetries to Shapes

p(           ) =  

p(           ) = 

p(           ) =

p(    M   ), M manifold  = 



From Symmetries to Shapes

p(           ) = Z 

p(           ) = Z x Z 

p(           ) = {e}

p(    M   ), M manifold  = finitely presented group



From Symmetries to Shapes

p(           ) = Z 

p(           ) = Z x Z 

p(           ) = {e}

p(    M   ), M manifold  = finitely presented group

Manifolds Groups



From Symmetries to Shapes

Theorem: Let G be a finitely presented group and let n > 3. Then there 
is a compact n-manifold M, which can be effectively computed, such 
that p(M) = G.



 

Putting Things Together

● If I could decide invariants in 4-manifolds I 
can decide invariants in finitely presented  
groups

● If I can decide invariants in finitely 
presented groups I can decide halting for 
turing machines.



 Question?
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