
Shapes, Software, Symmetries

Queens’ Maths Society
13th November, 2019

Nicolaus Heuer

Little Bio

• 2010-2015: BSc, MSc, ETH Zurich
• 2015-2019: Dphil (PhD), Oxford
• 2019-now: Herchel Smith Fellow and PDRA at

Queens’, Cambridge.

Motivating Question

Motivating Question

Can I tell two shapes apart?

Motivating Question

Can I tell two shapes apart?

Answer: No! If the shapes have
dimensions 4 or more.

Outline:

• Geometric Group Theory

Outline:

• Geometric Group Theory
• Explain the Title:

● Shapes
● Software
● Symmetries

Outline:

• Geometric Group Theory
• Explain the Title:

● Shapes: Manifolds
● Software: Turing Machines
● Symmetries: Groups

Outline:

• Geometric Group Theory
• Explain the Title:

● Shapes: Manifolds
● Software: Turing Machines
● Symmetries: Groups

• From Software to Symmetries
• From Symmetries to Shapes

Geometry Group Theory Computer
Science

Geometry Group Theory

Pythagoras of
Samos

(c. 570 – c. 495 BC)   

Évariste Galois
(1811 – 1832)

Computer
Science

Alan Turing
(1912-1957)

Geometry Group Theory Computer
Science

Geometric Group Theory

Mikhail Gromov
(born 1943)

Geometry Group Theory Computer
Science

Geometric Group Theory

 curvature
 growth
 length
 volume

 Abelian
 Nilpotent
 Cyclic

subgrouops
 Hyperbolic

groups

● Decision Problems
● Computational

Complexity

Shapes
(Manifolds)

A surface is an object which locally looks like a disk:

Shapes
(Manifolds)

A surface is an object which locally looks like a disk:

It is possible to list all surfaces:

…

Shapes
(Manifolds)

A surface is an object which locally looks like a disk:

It is possible to list all surfaces:

Theorem: If X is a closed (compact+no-boundary) surface then X is
equivalent to one of the following families of surfaces

● The sphere
● S(g), the surface with g handles
● P(g), a Klein bottle with g handles.

Shapes
(Manifolds)

A surface is an object which locally looks like a disk:

It is possible to list all surfaces:

Theorem: If X is a closed (compact+no-boundary) surface then X is
equivalent to one of the following families of surfaces

● The sphere
● S(g), the surface with g handles
● P(g), a Klein bottle with g handles.

???

Shapes
(Manifolds)

= =

Equivalent surfaces:

=

Shapes
(Manifolds)

For which n can I make a list (without repetitions) of all
n-manifolds?

Shapes
(Manifolds)

Examples:
● 2-dimensional manifolds: possible to classify
● 3-dimensional manifolds: possible to classify
● 4-dimensional manifolds: impossible to classify
● 5-dimensional manifolds: impossible to classify
● …

Uses lots of group
theory!!

Shapes
(Manifolds)

Examples:
● 2-dimensional manifolds: possible to classify
● 3-dimensional manifolds: possible to classify
● 4-dimensional manifolds: impossible to classify
● 5-dimensional manifolds: impossible to classify
● …

Uses lots of group
theory!!

We will explain this today!

Software
(Turing Machines)

What does a computer do?

Software
(Turing Machines)

What does a computer do?

Input Output

Software
(Turing Machines)

What does a computer do?

Input Output

Computation:
● Has infinite memory
● Finite set of rules to

manipulate entries in memory

Software
(Turing Machines)

Formally:
● Memory: Infinite tape with a start point and a finite set

with symbols from a finite set A (e.g. A = {0,1,b}) on them.
A is the tape alphabet.

● Working-Memory: A finite set Q of states. With one initial
state i and one final state f.

● A pointer to the tape
● A set of rules r : Q x A Q x A x {L,R}

How to compute things:
● Write input on the tape, set pointer to the start and state to i
● Manipulate entries according to rules.
● Finish: once the state reaches f. Then the output is on the tape.

Software
(Turing Machines)

Formally:
● Memory: Infinite tape with a start point and a finite set

with symbols from a finite set A (e.g. A = {0,1,b}) on them.
A is the tape alphabet.

● Working-Memory: A finite set Q of states. With one initial
state i and one final state f.

● A pointer to the tape
● A set of rules r : Q x A Q x A x {L,R}

Input: 0 1 1 0 0 0 1 0 1 1 0

Software
(Turing Machines)

Formally:
● Memory: Infinite tape with a start point and a finite set

with symbols from a finite set A (e.g. A = {0,1,b}) on them.
A is the tape alphabet.

● Working-Memory: A finite set Q of states. With one initial
state i and one final state f.

● A pointer to the tape
● A set of rules r : Q x A Q x A x {L,R}

b b 0 1 1 0 0 0 1 0 1 1 0 b b

State = i
r(i,0) = (q_1,1,L)

Input: 0 1 1 0 0 0 1 0 1 1 0

Software
(Turing Machines)

Formally:
● Memory: Infinite tape with a start point and a finite set

with symbols from a finite set A (e.g. A = {0,1,b}) on them.
A is the tape alphabet.

● Working-Memory: A finite set Q of states. With one initial
state i and one final state f.

● A pointer to the tape
● A set of rules r : Q x A Q x A x {L,R}

b b 0 1 1 0 1 0 1 0 1 1 0 b b

State = q_1
r(i,0) = (q_1,1,L)

Software
(Turing Machines)

Formally:
● Memory: Infinite tape with a start point and a finite set

with symbols from a finite set A (e.g. A = {0,1,b}) on them.
A is the tape alphabet.

● Working-Memory: A finite set Q of states. With one initial
state i and one final state f.

● A pointer to the tape
● A set of rules r : Q x A Q x A x {L,R}

b b 0 1 1 0 1 0 1 0 1 1 0 b b

State = q_1
r(q_1,0) = (q_2,0,L)

Software
(Turing Machines)

Formally:
● Memory: Infinite tape with a start point and a finite set

with symbols from a finite set A (e.g. A = {0,1,b}) on them.
A is the tape alphabet.

● Working-Memory: A finite set Q of states. With one initial
state i and one final state f.

● A pointer to the tape
● A set of rules r : Q x A Q x A x {L,R}

b b 0 1 1 0 1 0 1 0 1 1 0 b b

State = q_2
r(q_1,0) = (q_2,0,L)

Software
(Turing Machines)

Formally:
● Memory: Infinite tape with a start point and a finite set

with symbols from a finite set A (e.g. A = {0,1,b}) on them.
A is the tape alphabet.

● Working-Memory: A finite set Q of states. With one initial
state i and one final state f.

● A pointer to the tape
● A set of rules r : Q x A Q x A x {L,R}

b b 0 1 1 0 1 0 1 0 1 1 0 b b

State = q_2
r(q_2,1) = (f,1,R)

Software
(Turing Machines)

Formally:
● Memory: Infinite tape with a start point and a finite set

with symbols from a finite set A (e.g. A = {0,1,b}) on them.
A is the tape alphabet.

● Working-Memory: A finite set Q of states. With one initial
state i and one final state f.

● A pointer to the tape
● A set of rules r : Q x A Q x A x {L,R}

b b 0 1 1 0 1 0 1 0 1 1 0 b b

State = f
r(q_2,1) = (f,1,R)

COMPUTATION FINISHED!

Software
(Turing Machines)

Does a given Turing machine has to complete its computation (‘Halt’)?
 → Clearly No!

Can we decide if a Turing machine halts?

Is there a Turing machine h with input all Turing Machines and all inputs,
such that:

Software
(Turing Machines)

Does a given Turing machine has to complete its computation (‘Halt’)?
 → Clearly No!

Can we decide if a Turing machine halts?

Is there a Turing machine h with input all Turing Machines and all inputs,
such that:

 h : N x N → {0,1}
Assume that all Turing Machines and
Inputs are encoded in N (natural
numbers).

Software
(Turing Machines)

Define: g : N → {0,1} via:

If g is the nth Turing machine then

Software
(Turing Machines)

Define: g : N → {0,1} via:

If g is the nth Turing machine then

● If g(n) halts, then h(n,n)=0, hence g(n) does not halt
● If g(n) does not halt, then h(n,n)=1, hence g(n) does

halt.
CONTRADICTION

Software
(Turing Machines)

Theorem (Turing): There is no Turing Machine which decides
if a Turing Machine with a given input halts or not.

Symmetries
(Groups)

ISOM() = {e, r1, r2, s1, s2, s3}

= D6

Symmetries
(Groups)

ISOM() = {e, r1, r2, s1, s2, s3}

= D6

How can we store this information?

● Write out the Cayley Table (not so efficient)

Symmetries
(Groups)

ISOM() = {e, r1, r2, s1, s2, s3}

= D6

How can we store this information?

● Write out the Cayley Table (not so efficient)
● Or: Just record the most essential equations (‘relations’):

Symmetries
(Groups)

Generally: S a finite set, R a set of relations in S, then set:

G is finitely presented if S and R are finite.

Symmetries
(Groups)

Generally: S a finite set, R a set of relations in S, then set:

G is finitely presented if S and R are finite.

What can we know about the group from a given group
presentation?

From Software to Symmetries

Question: Can we decide if an element in a finitely presented group is trivial?

From Software to Symmetries

Question: Can we decide if an element in a finitely presented group is trivial?

NO!

Because we can use groups to simulate
Turing Machines

From Software to Symmetries
(sketch in semi-groups)

Let T be a Turing machine with
● Tape Alphabet A
● States Q

From Software to Symmetries
(sketch in semi-groups)

Let T be a Turing machine with
● Tape Alphabet A
● States Q

Define a finitely preseted (semi) group via

From Software to Symmetries
(sketch in semi-groups)

b b 0 1 1 0 0 0 1 0 1 1 0 b b

State = i

Input: 0 1 1 0 0 0 1 0 1 1 0

0 1 1 0 P i 0 1 0 1 1 0

Word in G:

r(i,0) = (q_1,1,L)

From Software to Symmetries
(sketch in semi-groups)

b b 0 1 1 0 0 0 1 0 1 1 0 b b

State = i

Input: 0 1 1 0 0 0 1 0 1 1 0

0 1 1 0 P i 0 1 0 1 1 0

Word in G:

r(i,0) = (q_1,1,L)

Relation:
0 P i 0 = P q_1 0 1

From Software to Symmetries
(sketch in semi-groups)

0 1 1 0 P i 0 1 0 1 1 0
= 0 1 1 P q_1 0 1 1 0 1 1 0

Word in G:

b b 0 1 1 0 1 0 1 0 1 1 0 b b

State = q_1
r(q_1,0) = (q_1,1,L)

Relation:
0 P i 0 = P q_1 0 1

From Software to Symmetries

Theorem: It is undecidable if an element in a finitely presented
group represents the identity or not.

From Symmetries to Shapes

From Symmetries to Shapes

(and the other way around!)

From Symmetries to Shapes

Fundamental group:

Let X be a shape (a topological space) with a point x.

p(X) the fundamental group of X is:
● Set of all loops based at x
● We can combine two loops g, h in p(X) by applying them after

each other

From Symmetries to Shapes

Fundamental group:

Let X be a shape (a topological space) with a point x.

p(X) the fundamental group of X is:
● Set of all loops based at X
● We can combine two loops g, h in p(X) by applying them after

each other
● Equivalent if loops can be stretched into each other.

Group?

● Identity?
● Associativity?
● Inverse?

From Symmetries to Shapes

Fundamental group:

Let X be a shape (a topological space) with a point x.

p(X) the fundamental group of X is:
● Set of all loops based at X
● We can combine two loops g, h in p(X) by applying them after

each other
● Equivalent if loops can be stretched into each other

Group?

● Identity? Loop which remains at x
● Associativity? Clear!
● Inverse? Same loop in opposite orientation

From Symmetries to Shapes

p() =

p() =

p() =

p(M), M manifold =

From Symmetries to Shapes

p() = Z

p() = Z x Z

p() = {e}

p(M), M manifold = finitely presented group

From Symmetries to Shapes

p() = Z

p() = Z x Z

p() = {e}

p(M), M manifold = finitely presented group

Manifolds Groups

From Symmetries to Shapes

Theorem: Let G be a finitely presented group and let n > 3. Then there
is a compact n-manifold M, which can be effectively computed, such
that p(M) = G.

Putting Things Together

● If I could decide invariants in 4-manifolds I
can decide invariants in finitely presented
groups

● If I can decide invariants in finitely
presented groups I can decide halting for
turing machines.

 Question?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

